Dynamic Bipartite Stochastic Blockmodel Regression for Network Data Application to State and Intergovernmental Organization Networks

Qi Liu¹ Ruofan Ma¹ Santiago Olivella³ Kosuke Imai^{1,2}

¹Department of Government, Harvard University ²Department of Statistics, Harvard University ³Department of Political Science, UNC

Motivation

- Most political networks are:
- Bipartite two node types, ties only across types
- (e.g., states-treaties, legislatures-bills, lobbyists-politicians) Dynamic — ties evolve over time
- Problem: Use static/ projected unipartite models → bias and spurious clustering
- Our contribution: Dynamic Bipartite MMSBM

	Dynamic: No	Dynamic: Yes		
Bipartite: No	Box-Steffensmeier et al. (2019); Siegel & Badaan (2020); Weschle (2018); Naidu et al. (2021); Cruz et al. (2020); Weschle (2019); Bouchcer & Thies (2019); Bodea & Hicks (2015); Jiang & Zeng (2020); Shaffer (2022); Franzese et al. (2012); Lo et al. (2023); Goddard (2018); Edgerton (2024); Battaglini et al. (2020); Nyhan & Montgomery (2015); Box-Steffensmeier et al. (2020); Oklobdzija (2024); Aarøe & Peterson (2020); Kim et al. (2019); Blair et al. (2022); Cho & Fowler (2010); Cranmer & Desmarais (2011); Fishman and Davis (2022); Abi-Hassan et al. (2023)	Kim et al. (2020); Gilardi et al. (2020); Nieman et al. (2021); Harden et al. (2023); Uppala and Desmarais (2023)		
Bipartite: Yes	Sweet (2021); Kim & Kunisky (2020)			

Model Setup

- Dynamic bipartite graph $G_t = (V_{1,t}, V_{2,t}, Y_t)$
- Nodes $p \in V_{1,t}$ and $q \in V_{2,t}$. $Y_{pqt} = 1$ if an edge from p to q exists at time t, $Y_{pqt} = 0$ otherwise
- s_t : latent state; A: transition matrix
- π_{pt} , ψ_{qt} : mixed membership; $z_{pq,t}$, $u_{pq,t}$: (p,q) interaction specific group indicators
- B: $K_1 \times K_2$ block matrix. B_{gh} : log-odds of an edge forming between latent groups g and h
- \mathbf{x}_{pt} , \mathbf{x}_{qt} : monadic covariates (coefficient: $\boldsymbol{\beta}_{1qm}$, $\boldsymbol{\beta}_{2hm}$); \mathbf{d}_{pqt} : dyadic covariates (coefficient: $\boldsymbol{\gamma}$)

Simulation

Dynamic bipartite networks over 50 periods, 100 nodes per family:

- Latent states (HMM): Periods 1–25 in state 1; 26–50 in state 2
- Covariates:
- 1 monadic covariate per family: $x_{pt}, x_{qt} \sim 0.5 \cdot \mathcal{N}(-1.25, 0.09) + 0.5 \cdot \mathcal{N}(1.25, 0.09)$
- 1 dyadic covariate: $\mathbf{d}_{pqt} = \mathbf{d}_{pq,1} + \epsilon_{dt}$, where $\epsilon_{dt} \sim \mathcal{N}(0,1)$
- Difficulty levels: Easy, Medium, Hard vary B and β
- Model recovers:
- Mixed-membership vectors, group structure, regression parameters
- Good performance across difficulty levels

Easy, medium, to hard DGPs: more similar entries in B and more mixed memberships

Medium Case Results:

a) and b): estimated mixed-membership vectors align with known values; c): estimated blockmodel match known values (white numbers)

a): mixed-membership predicted using estimated coefficients match prediction using true coefficients.

b) and c): SEs across 100 simulated networks covers $sd(\hat{\beta})$ (red crosses) well.

Application: State-IO Network, 1965-2014

- Data: Yearly state-IGO membership data between 1965-2014, covering 200 countries and regions and 471 IGOs (Pevehouse et al., 2020; Davis & Pratt, 2021).
- Parameters: Three groups for both the state (S) and IGO (I) families. One latent state.

Group Labels Based on Estimated Block Model

- S1 (Internationalists): Most likely to instantiate links to a large number of IGOs in I1 and I3.
- S2 (Opportunists): Most populus group in the state family. Very likely to instantiate links to IGOs in I1, unlikely to interact with I2 and I3.
- S3 (Isolationists): A small number of states that has a low likelihood to interact with IGOs across groups.
- I1 (Universal IGOs): Attract a large number of states across groups.
- 12 (Trivial IGOs): Large number of IGOs that are unlikely to instantiate links with any groups of state.
- 13 (Exclusive IGOs): A small number of IGOs that only interact with states in S1.

Validating Group Labels

The **covariate effects align with our group labels**. For instance:

- Rich, democratic states that are geo-politically aligned with the US are more likely to have larger share of mixed-membership in S1.
- IGOs whose average members are more US-aligned and cross-regional are more likely to have a larger share of mixed-membership in I3.

Predictor	S1	S 2	S 3	I1	12	13
UN IP	-0.59	-2.26	-0.83			
	(0.29)	(0.26)	(0.25)			
V-Dem	2.95	3.97	0.68			
	(0.63)	(0.72)	(0.71)			
GDPpc	0.25	0.02	-0.05			
	(0.07)	(0.06)	(0.08)			
Europe	1.33	-2.61	0.37			
	(0.50)	(0.47)	(0.46)			
Ideal point (lagged)				-2.70	-2.73	-0.39
				(0.29)	(0.28)	(0.25)
Regional IO				0.72	0.80	-0.05
				(0.51)	(0.57)	(0.53)
Mem. Size (lagged)				0.00	-0.05	-0.01
				(0.01)	(0.01)	(0.01)
Salient IO				-0.16	-0.12	-0.23
				(0.57)	(0.57)	(0.63)
Number of Dyads 1,833,000						
						

Dynamic changes in mixed-membership align with related political events:

